Varied Fluency
 Step 8: Efficient Subtraction

Teaching Note:

This step explores different methods of subtraction. Children may find some methods more efficient than others and these can vary between children. Ensure discussion takes place to explore why children find various methods more efficient than others.

National Curriculum Objectives:

Mathematics Year 4: (4C2) Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate
Mathematics Year 4: (4C3) Estimate and use inverse operations to check answers to a calculation
Mathematics Year 4: (4C4) Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why

Differentiation:

Developing Questions to support comparing two methods of subtraction. Two 3-digit numbers with no exchanging.
Expected Questions to support comparing methods of subtraction. Includes two 4-digit numbers, with exchanges.
Greater Depth Questions to support comparing methods of subtraction. Includes 3-digit numbers from a 4-digit number or two 4-digit numbers, with exchanges. Includes some multi-step subtractions.

More Year 4 Addition and Subtraction resources.

Did you like this resource? Don't forget to review it on our website.

1a. Circle the most efficient way of solving the following calculation.

390-310 $=\square$
column method
count on in tens
2a. True or false? Counting on in hundreds to find the difference would be an efficient method of solving this calculation.

1b. Circle the most efficient way of solving the following calculation.

column method
count on in tens

2b. True or false? Adding one to both numbers before using a mental method would be an efficient method of solving this calculation.

799-399

3b. There are 845 trees in a forest. 820 are chopped down. How many trees are left?

- Use a column method.
- Find the difference by counting in fives.

Which is the most efficient method?

4b. Write each subtraction next to an efficient method in the table below.

Partition	
Counting On	

4b. Write each subtraction next to an
efficient method in the table below.

$$
\begin{aligned}
& 247-147 \\
& 582-370
\end{aligned}
$$

Counting On	
Column Method	

4a. Write each subtraction next to an efficient method in the table below.

896-351
782-732

5a. Circle the most efficient way of solving the following calculation.

$6,000-4,584=$	
partition take one off both count on	

6a. True or false? Adding five to both numbers would be an efficient method of solving this calculation.

5,350-1,295

5b. Circle the most efficient way of solving the following calculation.

$1,530-1,470=\square$
count oncolumn method

6b. True or false? Adding three to both numbers would be an efficient method of solving this calculation.
4,746-2,997

7b. A factory makes 7,540 teacups. 2,990 are chipped. How many are perfect?

- Add 10 to both numbers.
- Use a column method.

Which is the most efficient method?

8b. Write each subtraction next to an efficient method in the table below.

3,735-1,616
1,397-1,187
8,269-2,599

Counting On	
Column Method	
Add on to both	

Counting On	
Column Method	
Add on to both	

classroomsecrets.co.uk

9a. Circle the most efficient way of solving the following calculation.

$5,789-399$	$=\square$
take one off both add one to both count on	

10a. True or false? Adding one to both numbers would be an efficient method of solving this calculation.

$$
7,523-499
$$

9b. Circle the most efficient way of solving the following calculation.

$$
\begin{gathered}
1,025-995=\square \\
\begin{array}{c}
\text { count } \\
\text { on }
\end{array} \\
\hline \begin{array}{c}
\text { column } \\
\text { method }
\end{array}
\end{gathered}
$$

10b. True or false? Adding ten to both numbers would be an efficient method of solving this calculation.

3,440-990

11b. A shop has 9,564 bags of flour. By the end of the day, 5,089 bags of white flour and 910 bags of wholemeal flour are sold. How many bags of flour are left?

Use an efficient method to solve the word problem.

12b. Write each subtraction next to an efficient method in the table below.

$$
\begin{gathered}
4,526-337 \\
1,023-923 \\
7,000-5,654 \\
2,594-2,011
\end{gathered}
$$

Counting On	
Column Method	
Partitioning	
Take off both	

Varied Fluency Efficient Subtraction

Developing

1a. Count on in tens as both numbers are multiples of ten. $390-310=80$.
2a. True
3a. $285-132=153$. Use a column method as only one number is a multiple of two and they are too far apart.
4a. Various answers, for example:

Counting On	$782-732$
Column Method	$896-351$

Expected

5a. Take one off both numbers, then use the column method. This eliminates the need to exchange. 5,999-4,583 $=1,416$.
6a. True
7a. 3,427-1,046 $=2,381$. Children may find a column method may be more efficient as the numbers are not close together.
8a. Various answers, for example:

Counting On	$2,025-1,850$
Column Method	$8,294-3,523$
Add on to both	$5,682-3,999$

Greater Depth

9a. Adding one to both numbers eliminates the need to exchange. $5,790-400=5,390$ could then be completed mentally.
10a. True
11a. Various methods used to achieve an answer of 300 .
12a. Various answers, for example:

Counting On	$1,149-949$
Column Method	$8,334-675$
Partitioning	$2,082-1,071$
Addon to both	$3,495-2,995$

Varied Fluency Efficient Subtraction

Developing

1b. Column method as neither number is a multiple of 10 and they are too far apart to count in tens. $965-342=623$.
2b. True
3b. $845-820=25$. Both numbers are close together and are multiples of five, so finding the difference by counting on in fives would be efficient.
4b. Various answers, for example:

Partition	$582-370$
Counting On	$247-147$

Expected

5b. Counting on, as the numbers are close together and it would be possible to count on in tens. 1,530-1,470 $=60$.
6b. True
7b. 7,540-2,990 $=4,550$. By adding 10 to both numbers, it should be easier to calculate 7,550-3,000. A column method would require 2 exchanges.
8b. Various answers, for example:

Counting On	$1,397-1,187$
Column Method	$3,735-1,616$
Add on to both	$8,269-2,599$

Greater Depth

9b. Counting on in tens would eliminate the need to exchange. 1,025-995 $=30$. 10b. True
11b. Various methods used to achieve an answer of 3,565 .
12b. Various answers, for example:

Counting On	$1,023-923$
Column Method	$4,526-337$
Partitioning	$2,594-2,011$
Take off both	$7,000-5,654$

classroomsecrets.co.uk

