$1 \quad 180 \div 3=$

2

3 . $8 \times 33=$

1 mark
$41,034+586=$

1 mark
$5 \quad 120 \div 12=$

1 mark
6

1 mark
$72 \times 45=$

1 mark
$8 \quad 5,400 \div 9=$

1 mark
9 122,456-11,999 =

1 mark
10

2 marks

11
$2 \frac{1}{5}+3 \frac{2}{5}=$

$120.9 \times 200=$

1 mark
$13 \quad \frac{8}{9}-\frac{1}{4}=$

1 mark
$1 4 3 7 \longdiv { 8 8 8 }$

2 marks

Mark schemes

$1{ }^{60}$

2 4,921

364
$4 \quad 1620$
$5 \quad 10$
$6{ }^{22}$
Do not accept -22
$7 \quad 90$
8600

9
110,457

10 Award TWO marks for the correct answer of 3,266
If the answer is incorrect, award ONE mark for the formal method of long multiplication with no more than ONE arithmetical error,
e.g.

- 71
$\begin{array}{r}\times \quad 46 \\ \hline 426\end{array}$ 426
2840
3260 (error)
OR
- 71
$\times \quad 46$
426
2440(error)
2866
Working must be carried through to reach a final answer for the award of ONE mark.
Do not award any marks if the error is in the place value, e.g. the omission of the zero when multiplying by tens:

71
46
$\times \quad 4$
426
284 (place value error)
710
$115 \frac{3}{5}$

12180
Up to $2 m$
$13 \quad \frac{23}{36}$
Accept equivalent fractions or an exact decimal equivalent, e.g.
0.638 (accept any unambiguous indication of the recurring digits).

Do not accept rounded or truncated decimals.

Award TWO marks for the correct answer of 24
If the answer is incorrect, award ONE mark for the formal methods of division with no more than ONE arithmetic error, i.e.

- long division algorithm, e.g.

$$
\begin{aligned}
& 23 \text { r29 } \\
& 3 7 \longdiv { 8 8 8 } \\
& -\frac{740}{140} \text { (error) } \\
& -\frac{111}{29}
\end{aligned}
$$

OR

$$
\begin{aligned}
& 42 \\
& 3 7 \longdiv { 8 8 8 } \text { (error) } \\
&-\frac{740}{148} 20 \times 37 \\
&-\frac{148}{0} 4 \times 37
\end{aligned}
$$

- short division algorithm, e.g.

$$
\begin{aligned}
& 3 7 \longdiv { 8 8 ^ { 1 4 } 8 } 8 \text { r27 (error) } \\
& \hline
\end{aligned}
$$

Working must be carried through to reach a final answer for the award of ONE mark.
Short division methods must be supported by evidence of appropriate carrying figures to indicate the use of a division algorithm, and be a complete method. The carrying figure must be less than the divisor.

