Year 6 Maths Medium Term Plan

Term 1	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
	Number and place value -to understand the place value of digits. -partitioning -read, write and say numbers up to 10,000,000 -reading numbers on a number line.	Number and Place value (KENT TEST) - ordering and comparing -rounding -using positive and negative numbers in real life contexts -adding and subtracting -problem solving with negative numbers	Addition -To solve any subtractions calculations with numbers to 2 decimal places. -To work systematically to solve a problem -To solve multi step word problems. -To use estimation to check answers to calculations.	Subtraction To solve subtraction calculations with numbers to 2 decimal places. -To work systematically to solve a problem -To solve multi step word problems. -To use estimation to check answers to calculations	Multiplication \& division -x \& divide by 10 , 100, 1000 -Multiples and factors -doubling and halving (including decimals)	Multiplication -prime, square and cube numbers -Prime factors -To multiply multi digit numbers up to 4 digits by a two digit whole number -To carry out operations involving the four operations -To multiply decimals	Division -Divide numbers up to 4 digits by 1 digit then 2 digit whole number using short division. - Interpret remainders as whole number remainders, fractions or rounding. - To use the distributive property strategy to divide 'friendly' numbers. -Long Division Four Operations -To solve word problems
Mental Maths Skills	>To count in multiples of any number up to x12 forwards and backwards from any given number.	$>$ To count in steps of powers of 10 up to 1000 000 $>$ To count in 11s, 15 s , $19 \mathrm{~s}, 21 \mathrm{~s}, 25 \mathrm{~s}$ then back. Can you go past zero? $>$ To count in steps of $0.1,0.5,0.25$ to 10 then back. >Count forwards and backwards with positive and negative whole numbers including through zero. >To compare two numbers (which is less 4 thousands or 41 hundreds?). >To know 1000, 10,000, 100,000 more/less than any six digit number. To round any whole number to the nearest	>Find the difference by counting up through the next multiple of 10,100 or 1000: 7000-3675 is $+5+20+$ 300 $+3000=3325$ >Identify near doubles: 421 $+387=808$ (double 400 plus 21 minus 13) >Add or subtract the nearest multiple of 10,100 or 1000 adjust: add 0.9, 1.9, 2.9 or 1.1, 2.1, 3.1 etc by adding 1,2,3 and adjusting by 0.1. >Add or subtract four digit multiples of 100 $>$ Find what to add to a decimal with units, 10th and 100ths to make the next higher whole number or 10th.	>To find the difference by counting up through the next multiple. (count up from the smaller to larger number >Subtract 0.9, 1.9, 2.9 or 1.1, 2.1, 3.1 by subtracting $1,2,3$ then adjusting by 0.1 >Work out mentally one fact 4.97-1.58 and then state three other related facts >Subtract four digit+ multiples of 100 (570,000 + $250,000=\square$) >Find the missing number in $\square-2485=4128$ >Find what to add to a decimal with units, 10ths and 100ths to make the next higher whole number or 10th.	>To multiply and divide whole numbers by 10, 100, 1000 >To multiply and divide decimal numbers by 10, 100 and 1000 >Know the square numbers and those up to 100 . >Double decimal numbers. >Double multiples up to 10,000 >Use related facts to double numbers like 277. >Double numbers ending in 5 . > Halve/double one number in the calculation, find the	>Use factors for finding products mentally ($32 \times 24=32$ $\times 3 \times 8=96 \times 8=800$ $-(4 \times 8)=768$ >1 dentify numbers with an odd number of factors (squares) Identify two digit numbers with only two factors (primes) Recognise prime numbers. >To multiply by 15 (multiply by 10 , halve the result then add the two parts together: $22 \times 15=$ $22 \times 10=220+110=330$) >To multiply by 25 (multiply by 100 and then divide by 4.)	>Identify prime numbers. >Identify common factors. >Dividing by 10,100,1000 >Halving numbers. Prove: > 100 the last two digits are 00 and 10 the last digit is zero and 5 The last digit is 0 or 5 25 The last two digits are $\mathbf{0 0}, \mathbf{2 5}, 50$ or 75 2 The last digit is 0,2,4,5,8, 3 The sum of the digits is divisible by 3 4 The last two digits are divisible by 4 6 The number is even and divisible by 3.

		multiple of 10,100 or 1000 >To put integers in order from smallest to largest crossing zero. (-37, 4, 29, -4, -28) >To make statements about identification of odd and even numbers.	$>$ What must be added to 7.78 to make 8? >Add or subtract a pair of decimal fractions each less than 1 and with up to 2 decimal places.	>Subtract a pair of decimal fractions each less than 1 and with up to two decimal places. >Subtract numbers with different numbers of digits.	product then double/halve it.	> To know the 24 times table (six times table, double and double again - or double 12x) > To calculate 17 times table (add seven times table and ten times table) > To multiply a number by 49 or 51 (multiply it by 50 and add or subtract the number) > To multiply a number by 99 or 101 (multiply by 100 and add or subtract the number)	8 The last 3 digits are divisible by 8 9 The sum of the digits is divisible by 9 .
Term 2	Measurement (Time) and scales -To tell the time. -To solve time duration problems using the four operations. -To read scales.	Fractions Decimals and Percentages -finding fractions of shapes and numbers -converting between proper, improper and mixed numbers -equivalent fractions	Fractions Decimals and Percentages -To simplify fractions -ordering and comparing -To add and subtract fractions with denominators that are multiples of the same number -To add and subtract fractions with different denominators and mixed numbers	Geometry (Properties of Shape) -Types of lines -To know the properties of 2D shapes, including types of triangles and circles -Draw 2-D shapes given dimensions and angles. - To understand when to use a formula to calculate area (count squares of rectilinear and then using formula) -To calculate the area of triangles. -To calculate the area of parallelograms -To prove that shapes with the same area can have different perimeters. -To compare and classify geometric (2D) shapes.	Measure -volume, capacity and mass -To recognise, describe and build simple 3D shapes. -To make nets. To visualise a 3-D shape from it's net. -To visualise where patterns drawn on a 3-D shape will occur on its net. - To understand when to use a formula to calculate volume. -To calculate, estimate and compare the volume of cubes and cuboids	Statistics -Mean, mode and range. To interpret line and bar graphs. -To construct line graphs -To draw graphs relating to two variables. -To solve problems using line graphs.	Measure -length and money - converting between units of measure -To convert measures using decimal notation (to three decimal places). -To convert between miles and kilometres. To connect conversion of measures to a graphical representation. -solving problems with measure.
Mental Maths	$>$ To understand: Greenwich meantime, British Summertime,	>Identify the value of each digit in numbers	>To know how many halves in $1 \frac{1}{2}, 3 \frac{1}{2}, 9 \frac{1}{2}$, quarters in 1 $1 / 4,23 / 4,5 \frac{1}{2}$, etc	>Picturing shapes, moving, reflecting, rotating and growing.	>Times tables. >Division facts.	To count up and down a scale in	>To solve problems involving measures: I

and international date line. $>$ To know that: 1 millennium $=1000$ years, 1 century = 100 years and 1 decade $=10$ years. To recite the rhyme 30 days hath September.	given to three decimal places. >Suggest a fraction that is greater than one quarter and less than one third. >Identify a number that is halfway between for example: $5 \frac{1}{4}$ and $51 / 2$ $>$ To understand that finding one tenth is equivalent to dividing by 10. >Multiples >Factors	>Multiples >Factors	>Imagine a square: place an equilateral triangle on each side. >How many sides does the new shape have? >Imagine a triangle place a square on each side. >Imagine a line of length 3 m on the floor. I wish to walk around so I am always 1m away - describe the path. >Imagine a cube. Place a blob of paint on each corner. How many edges have one blob? >Put two blobs on the cube, on adjacent vertices. How many edges have one blob? How many have two? Put a blob on opposite corners Etc. >Imagine a tetrahedron. Put a blob on one vertex. How many edges have two blobs?	>X and dividing by 10, 100 and 1,000 >Mental addition facts.	intervals of any number. Test the hypothesis about the frequency of an event by collecting data quickly: Reading paper, voting, internet... To know the percentage equivalent to common fractions and vice versa ($1 / 4$, $1 / 2,1 / 5,3 / 4$ etc) To look at a pie chart and answer questions such as: (in the context of ages of the population of an area) - What fraction (percentage) of the population is 16 or under? 60 or over? -Why do you think there are more people aged 16 or under living here than aged 60 or over? To use mental addition and division skills to find the mean.	cut 65 m of a 3.5 m rope. How much is left? >To know the relationships fluently: 1 kilometre $=1000$ metres, 1 metre= 100 cm or 1000millimetres, 1 centimetre= 10 Millimetres, 1 kilogram= 1000 grams, 1 litre = 1000 millimetres. >For conversion make us of rhymes: A metre is just 3 foot three. It's longer than a yard, you see. >Two and a quarter pounds of jam. It's round about one kilogram. >A litre of water's a pint and three quarters. $>$ To know the equivalent of one thousandth of 1 km , $1 \mathrm{~kg}, 1$ litre in m, g and ml respectively. >To convert a larger metric unit to a smaller. 3.125 km is 3125 metres >To suggest items that could be measured using: kilometres, metres, centimetres, kilograms, grams, litres, millilitres.

Term 3	Fractions Decimals and Percentages -To multiply simple pairs of proper fractions (writing the answer in its simplest form) -To divide proper fractions by whole numbers. -To calculate decimal fraction equivalents (by dividing using a simple fraction)	Fractions Decimals and Percentages -converting between fractions and decimals. -converting between fractions, decimals and percentages.	Fractions Decimals and Percentages Finding percentages of amounts	Four Operations Take opportunity to revise any of the four operations.	Four Operations Multi-step, mixed operation word problems. -To multiply one digit numbers with up to two decimal places by whole numbers.	Algebra \& BIDMAS -To understand the order of operations using brackets. -To use simple formula to generate, express and describe: -Linear number sequences -Mathematical formula -Missing number, lengths, coordinates and angles problems -equivalent expressions ($a+b=b$ $+a)$ To find pairs of numbers that satisfy and equation with two unknowns To find all possibilities of combinations of two variables.	
	>To know the percentage equivalent to common fractions and vice versa ($1 / 4,1 / 2$, $1 / 5,3 / 4$ etc) >To look at a pie chart and answer questions such as: (in the context of ages of the population of an area) -What fraction (percentage) of the population is 16 or under? 60 or over? -Why do you think there are more people	>Identify the value of each digit in numbers given to three decimal places. >Recall and use equivalences between simple fractions, decimals and percentages, with obvious connections e.g. $0.4=\square$ \square 40\% >Multiply and divide numbers by 10,100 and 1000 (giving answers to three decimal places)	>To know that 33\% and 67 \% are roughly one third and two thirds. > To match decimals, fractions and percentages. >Recall and use equivalences between simple fractions, decimals and percentages, with obvious connections e.g. 0.4= ㅁㅁ = 40\% >Multiply and divide numbers by 10, 100 and 1000 (giving answers to three decimal places)	>Go back to Term 1 addition, subtraction, multiplication and division mental maths skills. Revisit those children need to work on.	>Go back to Term 1 addition, subtraction, multiplication and division mental maths skills. Revisit those children need to work on.	$>$ To express a relationship in symbols to start to use simple formula: > Use symbols to write a formula for the number of months m in years y. - Write a formula for the cost of c chews at $4 p$ each. - write a formula for the nth term of this sequence: $3,6,9,12$, 15 $>$ The perimeter of a rectangle is $2 \times(1+w)$	

Term 4	Measurement Money -Solving money problems. Measurement-Time -To solve time duration problems using the four operations.	Geometry -measure and draw accurately -types of angles -find missing angles (including within shapes) To identify angles and find missing angles. To express relationships algebraically	Fractions, Decimals and Percentages Review Fractions, Decimals and Percentages Statistics -To interpret pie charts To construct pie charts (using a computer programme). -To solve problems using pie charts -To connect angles and pie charts -To connect fractions and percentages with pie charts -mean -To choose the appropriate representations of data.	Geometry -position and direction -To describe positions on all four quadrants -To draw and translate simple shapes on the coordinate plane -To reflect simple shapes in the axes. -To draw and label all four quadrants with equal scaling. -To use the properties of shapes to predict missing coordinates -To express translations algebraically.	Geometry - Review circles -Review area and perimeter.	Ratio and Proportion -To use ratio to compare two things -To find equivalent ratios To compare three quantities using ratios - To follow simple recipes involving basic proportions -To read a simple scale on a map e.g. $1 \mathrm{~cm}=100 \mathrm{~cm}$, 250:1 means $1 \mathrm{~cm}=2.5 \mathrm{~m}$. -To solve problems involving missing values. (using integer multiplication and division facts). -To solve problems involving percentages -To use percentages for comparison -To use the scale factor to solve problems involving shapes -To use knowledge of fractions and multiples to solve problems involving unequal sharing	
	Review Mental Maths Skills based on fraction, decimals and	>To solve problems involving money: What is the total of $£ 110$, $£ 3.43$ and $£ 11.07$?	>Relate degrees to angles $>$ Relate angles to time. > Estimation of angles.	>Refer to the 'symmetrical' quality of the numbers with 0 as the middle value.	>To have rapid recall of positions of the compass- north, south, east, west	>In every week I spend 5 days at school. In every 2 weeks I spend X days	

						Alice fed the baby seal 8 fish. How many fish did its mother get? > For every 50p coin Mum gives to Dad, he gives her five 10p coins. Dad gave mum twenty-five 10p coins. How many 50p coins did mum give him? >Use multiplicative reasoning to solve simple ratio and proportion questions: - Kate shares out 12 sweets. She gives Jim 1 sweet for every 3 sweets she takes. How many sweets does Jim get? -Dee mixes 1 tin of red paint with 2 tins of white. She needs 9 tins altogether. How many tins of red paint does she need?	
Term 5	Number and place value -Sequences, finding the term-to-term rule	REVISION	REVISION	KS2 SATs week	Geometry Properties of shapes.	Statistics To interpret line and bar graphs. -To construct line graphs -To solve problems using line graphs. -Mean, mode and range.	

Term 6	Algebra -To understand the order of operations using brackets. -To use simple formula to generate, express and describe: -Linear number sequences -Mathematical formula -Missing number, lengths, coordinates and angles problems equivalent expressions $(a+b=b+a)$ To find pairs of numbers that satisfy and equation with two unknowns To find all possibilities of combinations of two variables.	Four Operations -Addition -Subtraction -Multiplication -Division -Multi-Step word problems	Geometry-position and direction -Reflection -Translation -Coordinates	Geometry-properties of shape -2D shapes -3D shapes -Nets of 3D shapes	Measurementvolume, capacity and mass -Capacity -volume	Measurement-length and money -Problems based on money. -converting units of money. -converting units of length.	Four Operations -Review four operations. -Apply four operations to a range of contexts.

